Average-case analysis of incremental topological ordering

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Average-case analysis of incremental topological ordering

Many applications like pointer analysis and incremental compilation require maintaining a topological ordering of the nodes of a directed acyclic graph (DAG) under dynamic updates. All known algorithms for this problem are either only analyzed for worst-case insertion sequences or only evaluated experimentally on random DAGs. We present the first averagecase analysis of incremental topological ...

متن کامل

Average-Case Analysis of Online Topological Ordering

Many applications like pointer analysis and incremental compilation require maintaining a topological ordering of the nodes of a directed acyclic graph (DAG) under dynamic updates. All known algorithms for this problem are either only analyzed for worst-case insertion sequences or only evaluated experimentally on random DAGs. We present the first average-case analysis of online topological orde...

متن کامل

eb 2 00 8 Average - Case Analysis of Online Topological Ordering ∗

Many applications like pointer analysis and incremental compilation require maintaining a topological ordering of the nodes of a directed acyclic graph (DAG) under dynamic updates. All known algorithms for this problem are either only analyzed for worst-case insertion sequences or only evaluated experimentally on random DAGs. We present the first average-case analysis of online topological orde...

متن کامل

Faster Algorithms for Incremental Topological Ordering

We present two online algorithms for maintaining a topological order of a directed acyclic graph as arcs are added, and detecting a cycle when one is created. Our first algorithm takes O(m) amortized time per arc and our second algorithm takes O(n/m) amortized time per arc, where n is the number of vertices and m is the total number of arcs. For sparse graphs, our O(m) bound improves the best p...

متن کامل

Incremental Topological Ordering and Strong Component Maintenance

We present an on-line algorithm for maintaining a topological order of a directed acyclic graph as arcs are added, and detecting a cycle when one is created. Our algorithm takes O(m) amortized time per arc, where m is the total number of arcs. For sparse graphs, this bound improves the best previous bound by a logarithmic factor and is tight to within a constant factor for a natural class of al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2010

ISSN: 0166-218X

DOI: 10.1016/j.dam.2009.07.006